DFT studies of oxygen dissociation on the 116-atom platinum truncated octahedron particle.
نویسندگان
چکیده
Density functional theory calculations are performed to investigate oxygen dissociation on 116-atom truncated octahedron platinum particles. This work builds on results presented previously [Jennings et al., Nanoscale, 2014, 6, 1153], where it was shown that shell flexibility played an important role in facilitating fast oxygen dissociation. In this study, through investigation of the larger particle size, it is shown that oxygen dissociation on the (111) facet of pure platinum species is still aided by shell flexibility at larger sizes. Only the hollow sites close to the edges of the (111) facet mediate oxygen dissociation; oxygen is bound too weakly at other hollow sites for dissociation to occur. Further studies are performed on the (100) facet, which is larger for the Pt116 particle than for either the Pt38 or Pt79 ones. Much higher dissociation barriers are found on the (100) facet compared to the (111) facet, where the bridge sites are favourable for oxygen dissociation.
منابع مشابه
A DFT study of oxygen dissociation on platinum based nanoparticles.
Density functional theory calculations are performed on 38 and 79 metal atom truncated octahedron clusters to study oxygen dissociation as a model for the initial stage of the oxygen reduction reaction. Pure platinum and alloyed platinum-titanium core-shell systems are investigated. It is found that barrierless oxygen dissociation occurs on the (111) facet of the pure platinum clusters. A barri...
متن کاملO 2 Dissociation on M @ Pt Core − Shell Particles for 3 d , 4 d , and 5 d Transition Metals
Density functional theory calculations are performed to investigate oxygen dissociation on 38-atom truncated octahedron platinum-based particles. This study progresses our previous work (Jennings et al. Nanoscale, 2014, 6, 1153), where it was shown that flexibility of the outer Pt shell played a crucial role in facilitating fast oxygen dissociation. In this study, the effect of forming M@Pt (M ...
متن کاملThe Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study
In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...
متن کاملEffects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound
Density functional theory (DFT) calculations were performed to investigate the effects of a carbon nanotube (CNT) on the properties of the fluorouracil (F-Uracil) anticancer drug. To achieve the purpose, a molecular model including both of F-Uracil and CNT molecules was created to represent the CNT@F-Uracil compound. The optimized parameters indicated that the new compound could show new proper...
متن کاملEffects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound
Density functional theory (DFT) calculations were performed to investigate the effects of a carbon nanotube (CNT) on the properties of the fluorouracil (F-Uracil) anticancer drug. To achieve the purpose, a molecular model including both of F-Uracil and CNT molecules was created to represent the CNT@F-Uracil compound. The optimized parameters indicated that the new compound could show new proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 48 شماره
صفحات -
تاریخ انتشار 2014